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A B S T R A C T   

The subject of ultrahigh dilutions has been under continuous debate over the years, mainly because the possi
bilities to analyze such diluted solutions are limited. In this context, transmission electron microscopy (TEM) 
investigations were conducted to evaluate the morphological characteristics of ethanol- and water-based highly 
diluted solutions of gold; three levels of potentization (6C, 30C, and 200C) were examined for each type of 
solution. Moreover, Raman spectroscopy and deep learning (DL) algorithms were employed for the analysis of 
the three potentization levels of purified water, unpurified water, and purified water-based gold solutions. Three 
batches were assessed for each considered category, and the ability to discriminate between all investigated 
classes, between the potencies within each group or between the classes within the same level of potentization 
were presented and discussed in correlation with the TEM findings. Distinct forms of organization were revealed 
by TEM for the three levels of potentization, while the gated recurrent unit (GRU) model showed great accuracy 
(88 %) for discriminating all classes, over 90 % accuracy for distinguishing the samples within each group and 
over 95 % accuracy for classification within the same level of potentization if unpretreated Raman spectra were 
used. Thus, this suite of methods (TEM-EDX and Raman spectroscopy in combination with DL) can be suc
cessfully used for the characterization and differentiation of highly diluted solutions resulting after potentization 
treatment. Furthermore, considering the results obtained from the discrimination study involving all 11 classes 
and a data augmentation approach, the spectral segmentation method can be seen as a valuable strategy for 
increasing the model prediction accuracy.   

1. Introduction 

Potentization is a process that involves successive dilutions and 
succussions (vigorous shaking); it was first introduced by the German 
physician Samuel Hahnemann, who observed that solutions of sub
stances that have undergone this process have a biological effect in 
humans - with therapeutic evidence [1]. To date, numerous homeo
pathic remedies have been used, and they are very well documented 
[2–6]; they are derived from a wide variety of substances that undergo 
potentization to obtain their healing properties. Several insightful per
spectives have attempted to explain the action of homeopathic remedies 
[7–11]. The impact of succussion (vigorously shaking) on some phar
maceutical preparations, such as Echinacea 10− 2, Baptisia 10− 3, Baptisia 

10− 4, Luffa 10− 4, and Spongia 10− 6, was recently highlighted via the aid 
of droplet evaporation and statistical analysis; the samples were man
ufactured in accordance with the European Pharmacopoeia rules for 
homeopathic drugs, and the authors employed 0, 10, or 100 succussion 
strokes. The results showed significant differences for all the investi
gated preparations [12]. Moreover, the effects of mechanical shocks (i. 
e., agitation, dropping) on protein solutions are well known, and mea
sures for mitigating these effects have been investigated and proposed in 
some studies [13,14]. However, for homeopathy, shaking together with 
dilution is an essential tool for remedy preparation. 

A major concern regarding potentized solutions at high dilutions 
(30C, 200C, etc.) beyond the Avogadro number, which sets the dilution 
limit (12C) beyond which the original substance cannot be present, is 
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that the starting material is not expected to be found in even the slightest 
amount [15]. Nevertheless, in a study based on medicines obtained from 
metals, Chikramane et al. [10] demonstrated the presence of the starting 
materials, in the form of nanoparticles, in extreme dilutions of 30C and 
200C by transmission electron microscopy (TEM), electron diffraction 
and inductively coupled plasma–atomic emission spectroscopy 
(ICP–AES). Various techniques have been used over the years for the 
characterization of homeopathically prepared remedies, highlighting 
the existence of specific structures even in highly diluted medicines 
[16–24]. However, within the scientific community, it is well known 
that the Benveniste experiment [25], shortly after the release of its 
findings, was proven false by a scientific committee sent by the journal 
Nature to the author’s laboratory, as explained by George Vithoulkas in 
his paper, “The controversy over the memory of the water” [26]. 

Water is a special solvent that plays an important role in biological 
and chemical processes [27]. Therefore, understanding the anomalous 
properties of liquid water has been of continuous interest, and many 
experimental and theoretical studies have been carried out to under
stand its structure [28,29]. Nevertheless, the structure and dynamics of 
water are still under continuous debate [30]. The sensitivity of the OH 
stretching mode to different local environments allows the use of 
vibrational spectroscopy in the study of the structure and dynamics of 
liquid water [28]. The investigation of liquid water by infrared and 
Raman spectroscopy reveals broad peaks in the OH stretching region, 
suggesting multiple underlying contributions (from various species 
induced by different local hydrogen-bonding arrangements), while 
distinct peaks can be clearly seen in the spectra of ice [31]. In 2009, Sun 
[32] analyzed liquid water under ambient conditions by Raman spec
troscopy and proposed the deconvolution of the OH stretching region 
into five subbands. However, due to the complexity of water and the 
high dilutions of the investigated solutions, such analysis is a very 
difficult task. To address these difficulties, chemometric techniques and, 
more recently, machine learning (ML) models have been applied to 
Raman signals for analysis and data learning [33]. 

ML algorithms are currently gaining increasing popularity in classi
fication applications [34,35]. Recently, traditional and deep learning 
algorithms methods have successfully been applied to discriminate the 
Raman spectra of various complex materials (i.e., minerals) or classify 
high-dimensional spectroscopic data [36–38]. 

Deep learning (DL) is a subfield of ML that is substantially more 
robust than feature engineering-based methods that were used in the 
past. DL approaches have many benefits, including being time-efficient, 
requiring no feature construction, and yielding superior outcomes. 
Artificial neural networks, often known as ANNs, are the precursors of 
DL techniques. ANNs consist of an input layer, one or more middle levels 
(layers), and an output layer. These approaches are often trained by 
supervised learning, which means that predefined labels are used for a 
set of data in the training process. The convolutional neural network 
(CNN) [39], one of the most representative DL networks, is a type of 
forward feedback neural network that uses convolutional operations and 
a very large number of filters. There are many different types of 
convolutional-based learning algorithms that can be used according to 
the desired task. Typically, 2-D CNN models are utilized for image- 
driven applications. The gated recurrent unit (GRU) [40,41] and 1-D 
CNN models are utilized to handle time series-based prediction or 
classification tasks. The key motivation is that recurrent models have the 
potential ability to preserve long-term relationships between sequence 
data. These approaches provide a substantial amount of assistance in 
resolving the vanishing gradient problem [42]. 

The present work investigates the structural organization of poten
tized ethanol- and water-based solutions of gold, a homeopathic remedy 
named Aurum metallicum (AUR). Three highly diluted (6C, 30C and 
200C) AUR solutions were subjected to TEM analysis by two indepen
dent laboratories located in Romania and Turkey. Different organiza
tions of these solutions were confirmed by both labs. The choice of these 
centesimal dilutions was motivated by the need to investigate solutions 

containing low amounts of the initial substance, even beyond the Avo
gadro number (i.e., the latter two dilutions investigated). Raman spectra 
were also obtained for various potentized water-based solutions (puri
fied water (PW), unpurified water (UW) and PW-based gold solution 
(AUR)) and processed by DL algorithms to investigate the ability of the 
GRU models to discriminate between all these solutions and classify the 
samples within the investigated categories (AUR, PW, and UW) or 
within the three levels of potentization (6C, 30C, and 200C). DL was 
utilized to evaluate its efficiency for Raman spectra classification. 
Raman spectral values are assumed to be time series values; hence, we 
applied a recurrent neural network. We performed experiments with the 
GRU model since it solves both the vanishing gradient problem and the 
speed issue. Thus, we tested the capacity of this classification approach 
to be used, in combination with Raman spectroscopy, for the analysis of 
water-based solutions obtained after potentization. Our results allowed 
us to prove that this suite of methods (TEM-EDX and Raman spectros
copy in combination with DL) can be successfully used for the charac
terization and differentiation of highly diluted solutions resulting after 
the potentization treatment. 

2. Material and methods 

2.1. Materials 

All the investigated solutions were prepared by the Korres company 
(Athens, Greece), a company certified by the National Medicines Agency 
(EOF - Greece). These solutions were produced in accordance with the 
German Homeopathic Pharmacopoeia (GHP), adhering to Good 
Manufacturing Practice (GMP) guidelines [43], and taking European 
Pharmacopoeia procedures for conformity tests into account, with a few 
clearly indicated exceptions. Specifically, the exceptions pertain to the 
solvents used in the final step of the preparation process: 50 % v/v 
ethanol for ethanol-based solutions and purified water for water-based 
solutions. The solutions were categorized, based on the starting mate
rial, into three groups: purified water (PW), unpurified water (UW), and 
Aurum metallicum (AUR). For each category, three potency levels (6C, 
30C, and 200C) were prepared, with three batches of each potency level 
produced on different days. The C notation is associated with centesimal 
dilution and means 1 part of the concentrated solution/previously 
potentized solution to 99 parts of eluent (mass/mass). 

For the PW and UW samples, the objective was to prepare potentized 
solutions that are analogous to medicinal solutions in all respects except 
for the absence of an active medicinal ingredient. PW (conformity ac
cording to the European Pharmacopoeia – Ph. Eur.) is generally used for 
the preparation of homeopathic remedies, while UW is partially puri
fied. The water types employed in this study had the following charac
teristics, as indicated by the Korres company: PW – conductivity 
0.7–0.88 µS/cm, pH 6.4–6.8, NO3

– <0.2 ppm, and metal ions, Al < 3–5 
ppb, As < 0.005 ppm, Pb 0.00032 ppm, Cd < 0.001 ppm, Hg < 0.0005 
ppm (total heavy metals 0.00682 ppm, limit < 0.1 ppm); UW - con
ductivity 196 µS/cm, pH 7.8, HCO3

– 66 ppm, Cl– 22 ppm, NO3
– 9.8 ppm, 

Na+ 15 ppm, Ca2+ 10 ppm, Mg2+ 8.8 ppm, CO2 9.7 ppm. Thus, the Ph. 
Eur. purified water and unpurified water, respectively, were used as 
starting material. The Ph. Eur. purified water was also employed in the 
dilution process and, due to the specific experimental purposes, in the 
preparation processes of the 30C and 200C PW and UW solutions. 

For AUR category, a method based on the trituration of Aurum 
metallicum with lactose monohydrate, as the vehicle, was firstly 
involved up to 4C level; then, in order to obtain 6C liquid potency, the 
protocol employed purified water (conformity according to the Ph. Eur.) 
for the preparation of 5C potency and ethanol 30 % (m/m) for 6C liquid 
dilution manufacturing. Starting from 6C and up to 29C, and accord
ingly up to C199, the Ph. Eur. purified water was used in the preparation 
process. The final potentized solutions of 30C and 200C were produced 
with ethanol 50 % (v/v) for ethanol-based AUR solutions. Due to the 
specific experimental purposes, the Ph. Eur. purified water was used in 
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the preparation processes of the 30C and 200C water-based AUR 
solutions. 

2.1.1. Transmission electron microscopy 
For the TEM studies, two types of AUR samples were involved; the 

first type, AUR prepared in 50 % v/v ethanol solution, was analyzed in 
Romania and denoted E-AUR, while the second type of AUR was pre
pared only in purified water (PW) and was subjected to analysis in 
Turkey (denoted W-AUR). For both types of AUR, three potentized 
samples were investigated, namely, 6C, 30C and 200C. 

2.1.2. Raman investigations 
For the Raman investigations, three types of solutions were used: 

purified water (PW), unpurified water (UW) and AUR. Additionally, for 
the PW and UW groups, we considered nonpotentized samples (refer
ence samples of the water types used for the potentization process) and 
three types of potentized water samples (6C, 30C and 200C); for each 
type of potentized water samples, three batches were prepared on three 
different days. For the AUR category, only the water-based potentized 
solutions were investigated. This means a total of 12 samples for PW, 12 
samples for UW, and 9 samples for AUR were considered. 

2.2. Methods 

2.2.1. Romanian TEM and EDX procedures 
Structural and morphological characterization of the AUR samples 

was realized on a Hitachi HD-2700 scanning transmission electron mi
croscope (STEM) equipped with a secondary electron (SE) detector, a 
transmitted electron (TE) detector (Hitachi High Tech., Japan) and a 
cold field emission gun designed for high-resolution (HRTEM) imaging 
with a resolution of 0.144 nm. Carbon-coated TEM grids were treated 
with 6 µl of the potentized solutions of AUR, which were previously 
succussed 10 times for homogenization. After 1–2 min, the excess liquid 
was blotted by Whatman grade 1 filter paper, and the grids were allowed 
to dry in air. The samples were analyzed using the STEM system oper
ated at 200 kV. A dual EDX system consisting of an X-Max N100TLE 
silicon drift detector (SDD) (Oxford Instruments) was used for the EDX 
investigations. 

2.2.2. Turkish TEM and EDX procedures 
TEM images of the three potencies (6C, 30C and 200C) of AUR were 

obtained using a Hitachi HT 7800 TEM operating at an acceleration 
voltage of 100 kV. After each sample was shaken 10 times, 1 drop was 
dripped onto a carbon-coated grid and allowed to dry in a clean envi
ronment. EDX analysis of samples was performed using an Oxford In
struments X-MaxN connected to the same TEM device to confirm the 
presence of gold. 

The histograms prepared for both the Romanian and Turkish TEM 
images were realized based on data obtained with ImageJ software 
(NIH, USA). 

2.2.3. Raman spectroscopy 
Raman spectra were recorded on an NRS-3300 Raman spectrometer 

(Jasco, Japan) equipped with a charge-coupled device (CCD) detector 
using 514.5 nm laser (green light) excitation. The solutions were 
analyzed in glass capillary tubes (Marienfeld, Germany) with a diameter 
of 1.5–1.6 mm. An Olympus UMPLFL 20X objective, 600 l/mm grating, 
0.1 × 6 mm slit, exposure time of 120 s and three scans were employed 
to record the Raman spectra from approximately 72 cm− 1 to 4020 cm− 1. 
The 521 cm− 1 peak, corresponding to Si, was used to calibrate the 
spectrometer. Raw and noisy data were not denoised or smoothed out, 
and outliers were not removed from the dataset. The preprocessing of 
data involved two main steps and was realized with Spectra Manager 
(JASCO) and OriginPro 2023 (OriginLab Corporation). The first data 
pretreatment step selected a wavenumber interval of 180 to 4000 cm− 1 

and limited the number of features to below 13,000 by applying a 3rd- 

order spline method with a data pitch of 0.3. These data were further 
normalized to [0,1] and considered for DL investigation as unpretreated 
Raman data. The second step involved a baseline subtraction (bg) pro
cess that was applied in OriginPro to the data obtained, before 
normalization, from the first step. In order to apply the bg process, the 
following steps were performed: user-defined baseline mode, the 2nd 
derivative (zeroes) method for anchor point detection, snap to spectrum, 
the line interpolation method and the same number of baseline points as 
input data [44]. The as-obtained data were further normalized to [0,1] 
before their use in constructing the bg-pretreated datasets for the DL 
study. 

2.2.4. Deep learning 
DL investigations were carried out using the Python programming 

language and Colab Pro, which provides an accelerated computing 
environment. The GRU model was built and trained using the Keras 
2.12.0 library. The Colab Tesla T4 GPU was utilized for training the 
model with a large batch size. The Tesla T4 has a total of 2560 CUDA 
cores, as well as computing 3.7, 15 GB of memory, and GDDR6 VRAM. 
Additionally, the Sklearn 1.2.2 package was utilized to analyze and 
explain the obtained findings. More details regarding the protocol for DL 
investigations are presented in Supplementary Material file and Figs S1 
and S2. 

3. Results 

To determine the ability of our proposed method for the character
ization of various solutions and potencies, we first aimed to determine 
the properties of the samples by TEM analysis. 

3.1. TEM investigation 

TEM is a valuable tool that provides fundamental data about the 
organization of nanomaterials; this knowledge is very important for 
understanding and development in materials science, as well as for fields 
using highly diluted solutions that are also composed of nanostructures. 

3.1.1. Aurum metallicum 6C 
Fig. 1 presents several TEM images obtained with two different in

struments (see Methods section) for the 6C potency of AUR. Two 
different media were employed for sample preparation – the first me
dium was a 50 % v/v ethanol solution, which was used for the AUR 
samples analyzed in Romania (E-AUR 6C). The second medium was 
purified water, which was employed for the samples investigated in 
Turkey (W-AUR 6C). 

Despite the underlying differences in solvents, the obtained TEM 
images are quite similar regarding the shape of the nanoparticles. 
However, the nanoparticle size depends on the solvent type. This is 
revealed in the histograms of the two samples, indicating smaller 
nanoparticles for E-AUR 6C than for W-AUR 6C (Fig. 1C and G), most 
likely because ethanol is more effective as a stabilizing agent than water. 
The EDX data (insets of Fig. 1 and Figs. S3 and S4) show comparable 
percentages of gold (Au) in both samples and the presence of silicon (Si) 
and oxygen (O) (the copper (Cu) is from the grid). 

3.1.2. Aurum metallicum 30C 
Furthermore, the 30C potency of AUR was investigated; Fig. 2 and 

Figs. S5-S8 show the TEM images, EDX data and TEM-EDX mapping 
results for this potency. Here, it is worth mentioning the similarities 
between the two samples, E-AUR 30C and W-AUR 30C, in terms of the 
nanostructure shape and the appearance of impurities. 

As in the previous case, potency 6C, the size of the nanoparticles/ 
nanostructures of 30C potency tends to be smaller for E-AUR than W- 
AUR (Fig. 2C and G); this behavior is explained by the capacity of 
ethanol to act as an efficient stabilizing agent. Moreover, the histograms 
in Figs. 1 and 2 indicate smaller nanostructures in E-AUR 30C than E- 
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AUR 6C and a significant decrease in size of more than 150 nm relative 
to the water-based samples; these large structures are clearly seen in W- 
AUR 6C, but they are visible only in traces in the W-AUR 30C sample. 
This significant change between the profiles of the two potencies, 6C and 
30C, appears after the potentization process, which involves several 
successive dilutions and succussions. 

3.1.3. Aurum metallicum 200C 
The characteristics of the 200C potency are illustrated in Fig. 3 and 

Figs. S9-S11 and were obtained by analyzing two samples (E-AUR 200C 
– prepared using aqueous 50 % v/v ethanol solution and W-AUR 200C – 
obtained only with purified water). 

The general tendency observed for the 6C and 30C potencies is also 
present here; more precisely, the size of the nanostructures in the E-AUR 

200C sample is smaller than those in W-AUR 200C, as revealed in the 
histograms in Fig. 3. Moreover, for both 200C samples, the nanoparticles 
are larger than the nanoparticles observed at 30C potency and are very 
different in size and shape from the nanoparticles at 6C potency (Figs. 1- 
3). 

Distinct organization and a total lack of impurities inside some AUR 
200C cluster assemblies are evident in Fig. 3B. Moreover, both AUR 
200C samples display a preferential branched assembly mode (Fig. 3A 
and D), and the presence of small amounts of impurities such as Si and Fe 
in these clusters is demonstrated by the EDX data presented in the inset 
of Fig. 3 and Figs. S9 and S11B. 

Fig. 1. TEM data for the 6C potency of AUR. (A-C) TEM images and histogram of the relative frequency of nanoparticle sizes for the AUR ethanol-based samples and 
(D-G) for the water-based samples; inset – EDX data for the marked points or the sum spectrum. 
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3.2. Raman spectroscopy and deep learning investigations 

After conducting the TEM studies, a rapid and nondestructive tech
nique such as Raman spectroscopy can be considered for the analysis of 
the investigated solutions. Due to the larger assemblies observed in TEM 
for the water-based samples and considering the Raman peculiarities of 
water–ethanol solutions, Raman spectroscopy was applied to the water- 
based solutions only. The objective was to investigate the trans
formations that appear in three groups/categories: PW, UW, and AUR. 
PW is generally employed for homeopathic remedy preparation, while 
UW is a partially purified form of water; these types of water possess 
different characteristics. Here, we note the low conductivity of the PW 
samples (0.7–0.88 µS/cm) and their low levels of ions (NO3

– <0.2 ppm, 
Al < 3–5 ppb, total heavy metals 0.00682 ppm); moreover, the UW 
samples have higher conductivity (196 µS/cm) as well as higher con
centrations of different ions (nitrate, bicarbonate, sodium, etc.). See the 
Material and Methods section for more details. 

Potentization was applied to PW, UW, and AUR samples prepared on 
three different days to obtain three batches of potentized samples at 6C, 
30C and 200C potencies. PW and UW are not generally potentized for 
commercialization; the potentization procedure was applied to them 
only for this study. Thus, 33 samples were analyzed by Raman spec
troscopy. Each sample was analyzed at 5 points to obtain representative 
data of the investigated solutions. A total of 165 Raman spectra (range 
180–4000 cm− 1) were subjected to the classification study. The raw and 
bg-pretreated Raman spectra obtained during this experiment, for 
different levels of potentization (6C, 30C, and 200C) of the investigated 
sample types (PW, UW and AUR), are shown in Figs. S12-S17. 

3.2.1. Classifying all classes with deep learning by using the GRU model 
The Raman spectral classification results for the 11 different classes 

obtained using the trained GRU model are displayed in Fig. 4; both 
unpretreated and bg-pretreated sets of data were considered. 

The confusion matrix is displayed to provide a summary of the 

Fig. 2. TEM data for the 30C potency of AUR. (A-C) TEM images and histogram of the relative frequency of nanoparticle sizes for the AUR ethanol-based samples and 
(D-G) for the water-based samples; inset – EDX data for the marked points or the sum spectrum. 
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number of instances in which the GRU model accurately or erroneously 
predicted the outcome. The model demonstrates a very good recognition 
capacity in comparing the three investigated categories; thus, it shows 
great efficiency in discriminating between the AUR, PW and UW cate
gories when unpretreated Raman data are considered (Fig. 4A). In this 
case, an accuracy of 88 % (Table 1) can be noted; this value can be 
regarded as very good, especially if the great similarities between the 
investigated classes are considered. This value, which is a little less than 
90 %, represents mostly the result of wrong assignments generated for 
different potentization levels or reference samples belonging to the same 
category; only 3 wrong assignments have been registered between the 
three investigated classes - AUR, PW, UW (one sample of AUR200C was 
associated to UW200C and two samples of UW30C were allocated to 
AUR6C and AUR200C, respectively). 

Thus, for the AUR category, the other three wrong assignments were 
due to the similarities between different levels of potentization within 
the group. A similar behavior has been also observed within the PW and 
UW groups. There were no errors related to the differentiation of PW 
from AUR or UW samples. Within the PW and UW groups, correct 
recognition was observed for the 200C potency level, while for the other 
levels of potentization, up to 5 samples were wrongly assigned (this 

maximum was reached in the PW6C class). 
However, when the GRU model was applied to the bg-pretreated 

dataset, the results showed an accuracy of only 59 % (Fig. 4B and 
Table 1). Major incorrect classification results were obtained within the 
three investigated groups, but there were also some wrong assignments 
to samples outside the proper group. These results show that the poor 
recognition capacity of the model is due to the loss of information that 
occurred when background subtraction was applied to the Raman data. 
The AUR and UW groups seem to be the most affected (Fig. 4B). 

Table 1 presents an in-depth analysis of the performance values of 
the proposed approach. The precision, recall, and f1 values for each class 
were determined independently. The results of the experiments indi
cated that the macro f1 scores for the two datasets were 0.88 and 0.59. 
Notably, the PW, PW6C, PW30C, and PW200C categories have stable 
recognition rates across both datasets. When recall values are taken into 
account, the model has a tendency to underestimate the classification 
accuracy of UW30C samples. It can be deduced from the findings that 
overall, the discriminative power of this model for the UW data is 
somewhat limited. Furthermore, this work investigates the use of a well- 
known machine learning approach, specifically support vector machines 
(SVM), for the categorization of Raman data. Compared with the deep 

Fig. 3. TEM data for the 200C potency of AUR. (A-C) TEM images and histogram of the relative frequency of nanoparticle sizes for the ethanol-based samples and (D- 
G) for the water-based samples; inset – EDX data for the marked points or the sum spectrum. 
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learning method (GRU), the traditional machine learning technique 
(SVM) yielded the lowest accuracy scores for the two datasets. 

Considering these results, a more in-depth investigation was con
ducted, namely an intelligent data augmentation approach was 
employed to increase the dataset’s size. Thus, by using a spectral seg
mentation strategy, every Raman spectrum was divided into smaller 
segments. The dimensions of the segment were found to be 1 × 1024. 
For example, when the sample size is decided to be 1 × 12733, a total of 
around 12 unique segments are acquired. The original dataset contains 
15 instances for a certain class. Upon completion of the segmentation 
procedure, the dataset is resized to 1980 × 1024 and consists of 11 
distinct classes. Thus, the size of samples per class becomes 180. The 
dataset is then partitioned, with 80 % allocated for training and the 
remaining portion reserved for testing purposes. The five-fold cross- 
validation was applied to measure the performance of our GRU model on 
obtained segmentation datasets. Following this approach, it was found 
that there is a direct relationship between increasing the size of the 
segment and the decrease in performance. The experimental results 
presented in Fig. S18 and Table S1, obtained by involving the samples 
from the testing sets, demonstrate that our GRU model achieves a high 
accuracy score of 99.45 % for unpretreated data and a perfect accuracy 
score of 100 % for bg-pretreated data across 11 classes. Even if further 
investigations, i.e. involving a larger number of samples, have to be 

made before proposing the spectral segmentation strategy as the most 
appropriate for experiments containing a high number of classes, this 
strategy can be considered as a valuable data augmentation approach for 
our type of data. 

3.2.2. Classifying potencies within each group with deep learning by using 
the GRU model 

The recognition rate obtained with the DL method within each 
category, (AUR 6C, AUR 30C, AUR 200C, PW), (PW, PW 6C, PW 30C, 
PW 200C) and (UW, UW 6C, UW 30C, UW 200C), was analyzed by 
involving unpretreated and bg-pretreated Raman data and the results 
were compared in terms of performance values. Fig. 5 illustrates the 
findings of the experiments after applying stratified 15-fold cross- 
validation (CV). 

To allocate samples for validation and training purposes, we 
employed a 15-fold splitting technique, wherein 11 samples are selected 
for validation and the remaining samples are designated for training. For 
the AUR group, the nonpotentized PW class was used as a reference. 

In the case of AUR vs. PW, the produced confusion matrices 
demonstrate that 98 % and 78 % accuracies were obtained, Fig. 5A,D. 
The findings showed accuracies of 90 and 75 % for the PW group, 
Fig. 5B,E, while accuracy values of 92 % and 68 % were obtained for the 
UW group, Fig. 5C,F. In general, the PW6C and UW30C groups have low 

Fig. 4. Confusion matrix of the GRU model for (A) unpretreated and (B) bg-pretreated data of all investigated categories.  

Table 1 
Classification results obtained with unpretreated and baseline-subtracted (bg-pretreated) Raman data.   

GRU SVM  

unpretreated bg-pretreated unpretreated bg-pretreated  

prec re f1 prec re f1 prec re f1 prec re f1 

AUR200C 0.88 1.00 0.94  0.73  0.53  0.62  0.64  0.60  0.62  0.35  0.40  0.38 
AUR30C 1.00 0.87 0.93  0.60  0.40  0.48  0.52  0.73  0.61  0.10  0.13  0.11 
AUR6C 0.81 0.87 0.84  0.63  0.80  0.71  0.36  0.33  0.34  0.17  0.20  0.18 
PW 0.78 0.93 0.85  0.71  0.67  0.69  0.75  0.80  0.77  0.55  0.80  0.65 
PW200C 0.83 0.67 0.74  0.46  0.73  0.56  0.53  0.53  0.53  0.50  0.53  0.52 
PW30C 0.92 0.80 0.86  0.73  0.53  0.62  0.65  0.73  0.69  0.50  0.40  0.44 
PW6C 0.88 1.00 0.94  0.57  0.53  0.55  0.64  0.47  0.54  0.17  0.13  0.15 
UW 0.88 0.93 0.90  0.55  0.73  0.63  0.69  0.73  0.71  0.18  0.13  0.15 
UW200C 0.93 0.87 0.90  0.78  0.47  0.58  0.64  0.60  0.62  0.58  0.47  0.52 
UW30C 0.85 0.73 0.79  0.42  0.53  0.47  0.50  0.40  0.44  0.29  0.27  0.28 
UW6C 0.94 1.00 0.97  0.64  0.60  0.62  0.80  0.80  0.80  0.55  0.40  0.46 
macro avg 0.88 0.88 0.88  0.62  0.59  0.59  0.61  0.61  0.61  0.36  0.35  0.35  

Accuracy: 88 % Accuracy: 59 % Accuracy: 61 % Accuracy: 35 %  
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Fig. 5. Deep learning model performance for assessing the discrimination within each group using (A-B-C) unpretreated and (D-E-F) bg-pretreated data.  

Fig. 6. Deep learning model performance for assessing the discrimination within each potentiation level using (A-B-C) unpretreated and (D-E-F) bg-pretreated data.  
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performance compared to the other classes. After performing a general 
analysis, it is clear that the AUR group has the fewest instances of 
incorrect classifications and that most misclassifications occur due to the 
great degree of resemblance between the 6C and 30C classes. 

3.2.3. Classifying within the same level of potentization with deep learning 
by using the GRU model 

Additionally, the performance of DL in discriminating classes within 
the same potentization level based on their Raman spectra was analyzed 
(Fig. 6). When categorizing the potentization levels, we considered five 
classes, including the potentized AUR, PW, and UW samples and the 
nonpotentized PW and UW samples as references. Analysis of the results 
showed that for 6C potency, accuracy values of 99 % (unpretreated) and 
84 % (bg-pretreated) were obtained from the GRU model. Accuracy 
values of 95 % (unpretreated) and 83 % (bg-pretreated) were also found 
for the 30C potency. For the 200C potency, the GRU model yielded 
accuracy values of 96 % (unpretreated) and 77 % (bg-pretreated). Thus, 
the best performance of the GRU model was observed in the case of low- 
dilution solutions (6C). 

4. Discussion 

The necessity to find reliable techniques for efficient characteriza
tion of ultrahigh dilutions is well-known. In this study, we show that it is 
possible to use a suite of methods (TEM-EDX and Raman spectroscopy in 
combination with DL) for successful characterization and differentiation 
of highly diluted solutions that are obtained after the potentization 
treatment. TEM-EDX can be used to assess the composition and 
morphology of any colloidal solution. We show here that this technique 
is efficient even for highly diluted solutions, allowing us to obtain 
valuable information related to each level of potentization and, in this 
way, to discriminate them by creating an image that could be associated 
with each potentization level. 

As a general observation, the morphology of the AUR 6C solution 
seems to be similar to that of usual gold nanoparticle colloidal solutions 
[45]; the size of gold nanoparticles depends on the nature of the raw 
materials used in the synthesis process. In the case of the other two 
potencies of AUR, 30C and 200C, their design appears to be governed by 
the constructal law that predicts the strategic engineering of novel ar
chitectures on the basis of a law of physics [46]. 

Si and O are the two elements omnipresent in the AUR 30C samples, 
while isolated nanoparticles containing impurities such as iron (Fe), ti
tanium (Ti), calcium (Ca), magnesium (Mg), and aluminum (Al) are 
visible in the E-AUR 30C sample, whose constituents are smaller (Fig. 2 
and Figs. S5-S7). These impurities either originate from the solvent used 
or could be formed during the potentization treatment by dissolution 
from the glass vials (e.g., Si or Ti). The reason that these impurities are so 
evident in potency 30C can be attributed to the size of the remedy’s 
constituents, which are smaller than the constituents of the other two 
potencies (6C and 200C), as depicted in the histograms of Fig. 1C and G, 
2C and G, and 3C and G. In addition, the filiform profile observed in the 
W-AUR 30C sample (Fig. 2D), the occurrence of some carbon (C)-based 
structures in E-AUR 30C (Fig. S7B), and the presence of gold in the two 
30C potency samples (Fig. 2 inset and Figs. S5 and S8B) must be 
highlighted. 

All these observations suggest a different organization for the 6C and 
30C potencies of AUR and indicate the presence of both nanoparticles 
and cluster assemblies in the 30C samples. Thus, the clear nanoparticle 
shape of impurities and the filiform/cluster assemblies formed from 
small structures promote the idea that at least for AUR 30C, the observed 
organization is not primarily related to the nanoparticulate systems, but 
more to large assemblies (clusters) of small structures. Most likely, these 
clusters also contain ethanol and water (in E-AUR) or water (in W-AUR) 
molecules, while impurities, either isolated or linked to these large as
semblies, appear as nanoparticles (clear round shape and different 
sizes). Although gold was identified in all the investigated samples, it 

appears scattered on the grid surface in the TEM-EDX mapping images. 
The results obtained for the AUR 200C samples suggest an extended 

organization of AUR 200C molecules, indicating the existence of stable 
and organized structures over a larger area. The impurities are present as 
large assemblies (Fig. S10B); thus, large impurities (micrometer scale), 
such Si, Al, Fe and O, linked together can be seen in the TEM-EDX 
mapping results. The filiform profile can be also noted for the W-AUR 
200C samples (Fig. 3A,3D) as well as the occurrence of some carbon (C)- 
based structures in E-AUR 200C (Figs. S10A and S10C), and the presence 
of gold in the two types of investigated 200C samples (Fig. 3 inset and 
Figs. S9 and S11B). 

Some of these results are supported by the literature; for example, the 
presence of gold, even at high potencies (30C and 200C) of AUR that are 
beyond the Avogadro number, was also shown in the papers of Chik
ramane et al. [10] and Rajendran [47]. In the work of Chikramane et al., 
the elemental composition of TEM particles was identified by selected 
area electron diffraction (SAED) and confirmed by ICP–AES analysis 
[10]. The study of Rajendran highlights the idea that nanoparticles are 
found mostly on the quantum dot scale in all solutions [47]; their par
ticle sizes are approximately similar to our data. This nanoparticulate 
perspective is also supported by our findings, but in addition, our results 
demonstrate that AUR’s structure combines nanoparticles and cluster 
arrangements composed of smaller or larger nanostructures. These 
cluster arrangements are more evident for the high dilutions that are 
beyond the Avogadro number and are influenced by the solvent nature 
and by the level of potentization; the higher the potency is, the more 
branched and larger the formed structures are. Extension of this orga
nization over a large area should lead to structures that are more stable 
and could be in accord with the constructal law of design and evolution 
in nature, as described by Bejan and Lorente [46]. 

In addition to the TEM-EDX study, we investigated whether a 
methodology based on Raman spectroscopy and DL is able to classify 
solutions that are not significantly different in structure, such as i) PW 
versus UW solutions, which display subtle differences since the UW used 
in these experiments is essentially a partially purified water used in 
cosmetics, and ii) PW versus AUR solutions, where the differences are 
due to the presence of very low concentrations of gold in the AUR 
samples. Moreover, the complexity and dynamics of water-based 
structures produce a response in the investigated Raman region (espe
cially the OH stretching range), as demonstrated by Sun [32] and several 
other authors [28–31]. 

The results obtained for all three investigated situations (classifying 
all classes, classifying potencies within each group (AUR, PW, and UW) 
or classifying within the same level of potentization (6C, 30C and 200C) 
demonstrate that DL approaches can be used to easily and effectively 
recognize various classes. In the dataset with the baseline removed 
(namely, bg-pretreated), the GRU model is unable to capture the data 
trend in its whole. To achieve better results for bg-pretreated data, we 
employed quantized normalization. Furthermore, in this case, the batch- 
normalization technique was only applied after the final dense layer of 
the model. A model with two stages of recognition might be proposed as 
an expansion of the current study. The first model would be responsible 
for determining the sample type, whereas the second model would be 
able to separate test samples into subclasses within the sample type 
class. This procedure takes significantly more time, but it is believed to 
produce superior results. Moreover, based on the results obtained for the 
discrimination study involving all the 11 classes and a data augmenta
tion approach, the use of a spectral segmentation method can be seen as 
a valuable strategy for increasing the model prediction accuracy. 

5. Conclusion 

Overall, by analyzing the results obtained from TEM-EDX and the 
methodology based on Raman spectroscopy and DL algorithms, we can 
argue that these methods can be successfully used for the character
ization of ultrahigh dilutions. This suite of techniques revealed a 
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modality that could be the basis for discriminating different remedies in 
accordance with the nature of the initial substances used to prepare the 
remedies or could allow the differentiation of samples based on their 
level of potentization. This approach allows the analysis of the highly 
diluted solutions on a far larger scale than was achievable in the past. 
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